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Background/Purpose:  
The cerebral metabolic rate of oxygen consumption (CMRO2) is a fundamental physiologic parameter that has 
only recently become amenable to measurement by noninvasive imaging modalities (1). Here, we present an 
approach based on simultaneous quantification of venous oxygen saturation (SvO2) and total flow, yielding 
CMRO2 in absolute physiologic units by invoking Fick’s equation (2). We show that the method lends insight 
into the physiologic response to various stimuli. 
 
Methods: 
SvO2 is obtained by modeling the vein as a paramagnetic cylinder from which the induced field is obtained 
analytically by phase mapping relative to the surrounding tissue, typically in the superior sagittal sinus (SSS). 
Flow is quantified by phase-contrast imaging either from the major inflow conduits (internal carotid and 
vertebral arteries) or SSS that drains approximately 50% of total blood in the brain.  Various embodiments are 
discussed in which flow and SvO2 are measured simultaneously, yielding CMRO2 with temporal resolutions as 
high 3 s, thereby permitting studies of non-steady state processes such as volitional apnea (3). Finally, in a 
translational project neurovascular reactivity in newborns with congenital heart disease was evaluated by 
subjecting the patients to transient hypercapnia (4).   
 
Results:  
Results obtained both experimentally and by forward calculation of the induced intravascular field in actual 
vascular geometries indicate that the analytical solution for an infinite cylinder is a robust approximation even 
in the case of significant deviations from circular cross-section, curvature and tapering. Baseline CMRO2 
values in healthy subjects were found to agree with those obtained with established invasive techniques (5).  
Further, the response to hypercapnia – an isometabolic stimulus – did not affect CMRO2, as expected. In 
contrast, volitional apnea caused a transient increase in CMRO2 (3). The distinguishing behavior is likely due 
to apnea representing a non-steady state, mixed hypercapnic/hypoxic stimulus. Lastly, neonates with 
congenital heart disease, including hypoplastic left heart syndrome and transposition of the great arteries, in 
whom arterial blood is undersaturated, were found to respond normally to hypercapnia, i.e. increased flow 
commensurate with elevated SvO2 (4). Their baseline CMRO2, however, was lower by up to a factor of five 
relative to adults, likely as a result of the much lower oxygen demands of the undeveloped brain and the effect 
of sedation.  
 
Conclusion:  
MRI blood oximetry in conjunction with total flow measurement is a practical and robust method for evaluation 
of CMRO2 and a means to study neurovascular reactivity in patients.  
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Background/Purpose:  

A number of devastating neurological disorders are associated with either too much or too little iron  in 
the brain.  For example, excessive brain iron accumulation is reported in Parkinson’s and Alzheimer’s 
Diseases, amyotrophic lateral sclerosis, neurodegeneration with brain iron accumulation and 
Huntington’s Disease. On the other hand, iron deficiency remains the most prevalent micronutrient 
problem  in the world and it is known that too little brain iron during development results in significant 
cognitive and performance deficits reflecting  impairments in myelination  and neurotransmitter 
production. Brain iron deficiency during adulthood also appears to underlie the pathobiology of a 
common neurological disorder known as Restless Legs Syndrome. Although brain iron concentrations 
are currently considered static, the maintenance of brain iron homeostasis appears much more 
dynamic than previously thought, particularly given a recent report of cyclical day/night variation in brain 
iron levels. In addition, genetics also play a role in brain iron levels as has been shown in both in-bred 
strains of mice and humans.  In humans, both HFE gene variants (the most common polymorphism in 
Caucasians) as variants of the transferrin gene are associated with differences in brain iron status and 
those changes in brain iron concentrations are associated with cognitive performance.  Moreover, 
mutations in the HFE protein are associated with a four-fold increase in risk of amyotrophic lateral 
sclerosis.  Thus, elucidation of the mechanism(s) by which the brain acquires iron and, equally 
important, the regulation of brain iron transport, can provide insights into the adaptive responses 
involved in maintaining brain iron homeostasis and those that contribute to the maladaptive responses 
emergent with neurobiological disease.    

Conclusion:  

In this talk we will review the data on changes in brain iron with aging and disease and discuss novel 
animal models in which to interrogate brain iron status. 
 
 
 
References:  
1.  Leitner DF, Connor JR.  Functional roles of Transferrin in the Brain.  Accepted for publication to Biochimica et 

Biophysica Acta, 2011. 

 

2.  Todorich B, Pasquini J, Garcia C, Paez P, Connor JR:  Oligodendrocytes and myelination: the role of iron.  GLIA 

57(5):467-478, 2009. 

 

3.  Nandar W, Connor JR.  HFE Gene Variants Affect Iron in the Brain.  The Journal of Nutrition.  141:729S-739S, 2011. 

 

 

 
 

 



Computational Methods for Inverse Problems 
James G. Nagy1 

1Mathematics and Computer Science Department, Emory University, Atlanta, GA, 30322, USA 
 
Background/Purpose:  
 
Inverse problems arise in many medical imaging applications, such as image reconstruction.  Such problems 
are sensitive to noise in the measured data.  Many algorithms have been developed to compute approximate 
solutions of inverse problems, but they may differ in a variety of ways.  For example, there are several different 
regularization methods one could use, and for each of these, various methods for choosing regularization 
parameters.  These choices may depend on statistical assumptions imposed on the forward model and the 
noise.  To use algorithms effectively, it is essential to understand how they perform on a variety of problems. 
 
Methods: 
 
We describe some basic approaches to solving inverse problems, such as filtering and iterative methods.  We 
discuss various regularization schemes that can be used, and the tradeoffs one must consider.  The theory of 
linear problems is much more developed than it is for nonlinear problems.  This is due, in large part, to the fact 
that the numerical treatment of nonlinear inverse problems is often highly dependent on the particular 
application.  However, good intuition can be gained by studying linear inverse problems, which can be then 
used to develop approaches for nonlinear inverse problems. 
 
Results:  
 
Properties of algorithms discussed in this talk will be illustrated by several numerical examples.  We show that 
with proper choices of parameters, the algorithms can compute accurate reconstructions.  In addition, we show 
that incorporating nonlinear physics into the mathematical model can allow for much better image 
reconstructions than using simplifying approaches.  We illustrate this, in particular, for tomosynthesis imaging, 
where a nonlinear iterative approach produces much better reconstructed images than a standard filtered 
back-projection method. 
 
Conclusion:  
 
The discussion and examples used in this talk illustrate the range of difficulties that can be encountered when 
solving inverse problems, and we discuss the issues that must be addressed when designing algorithms.   
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Susceptibility manifestation of Multiple Sclerosis 
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PURPOSE & METHODS: Multiple sclerosis (MS) MS is a chronic inflammatory disease of central nervous 
system characterized by focal T cell and macrophage/microglia infiltrates associated with demyelination. In the 
majority of patients, MS begins as a relapsing-remitting course but eventually evolves to a state of progressive 
decline in disability.  Focal inflammatory demyelinating lesions are the predominant pathological findings in the 
patients with relapsing disease whereas diffuse axonal injury with microglial activation has been found to be the 
hallmark of progressive disease.1 Microglial activation itself occurs either as a response to CNS injury for 
example as in Wallerian degeneration, or in response to signals from other inflammatory cells including 
macrophages and lymphocytes.  Further understanding the role of the innate immune system in MS, especially 
in progressive disease, will further our potential to translate new therapies.  Imaging biomarkers to measure 
microglia activity is currently an unmet need within the field. Pathological studies have indicated that some 
populations of activated macrophages/microglia are cellular sources of iron2, for this reason utilizing MRI to 
image iron may potentially be a new biomarker for the disease. Paramagnetic iron causes an increase in tissue 
susceptibility, which can be detected in MRI 3,4,5 and quantitative susceptibility mapping (QSM) enables a direct 
measure of tissue susceptibility. We utilized QSM to assess the level and temporal change of susceptibility 
among MS lesions at various ages.  
 

RESULTS: Thirty-two clinically confirmed MS patients underwent MRI, which included a 3D multiecho GRE 
sequence with QSM reconstruction. To estimate the ages of MS lesions, all available prior MRIs (performed 0.3 
– 10.6 years ago) were examined. Lesion susceptibilities relative to normal appearing white matter (NAWM) 
and temporal rate of change were obtained from QSM images. We found 162 MS lesions being age measurable 
due to the availability of prior scans. The relative susceptibility on average was .5, 35, 42, -2, 1, and .6 ppb (part 
per billion) for early enhancing lesions (0y), early non-enhancing lesions (0 – 2y), lesions aged 2 – 4y (no 
lesions aged 4– 6y), 6 – 8y, 8 – 10y, and > 10y, respectively. The most rapid short-term susceptibility increase 
was found among lesions transitioning from enhancing to non-enhancing. 

CONCLUSIONS: Magnetic susceptibility increases rapidly as lesions change from enhancing to non-enhancing, 
plateaus and gradually dissipates as lesions age. These susceptibility changes may reflect the changing 
pathophysiological mechanisms within the lesions. Our results suggest that the inflammatory cells present at the 
earliest stages of lesion development are not iron rich. However, the observed rapid increase in susceptibility is 
suggestive that iron accumulates rapidly in lesions after loss of gadolinium enhancement. If the high 
paramagnetic susceptibility measured in QSM is to be interpreted as iron acquired by microglia/macrophages, 
this observation is suggestive of a transition to a different subpopulation of cells. However, phenotypic 
identification of the specific subpopulations of macrophages/microglia that have a propensity to contain iron and 
their role in the pathogenesis of MS remains poorly understood. Future studies are warranted to understand the 
underlying cellular processes of MS lesion susceptibility change and the pathological significance of these 
cellular changes.  
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Background/Purpose:  
 
Many scientific and engineering applications require numerical methods to compute efficient and reliable 
solutions to inverse problems.  Inverse problems arise in important applications, including biomedical imaging, 
geophysics, astrophysics, inverse scattering and molecular biology; see for example, [1,3,4,5] and the 
references therein.  Oftentimes, real-life applications require the computer to process extremely large amounts 
of data, and previously proposed methods for solving inverse problems are not adequate for these large-scale 
problems.  The focus of our work is to develop numerical methods that can efficiently and accurately solve 
large-scale inverse problems.   

Methods: 
 
In order to obtain meaningful reconstructions, regularization is needed to stabilize the inversion process.  
Typically, this is done by imposing prior knowledge regarding the noise in the data and prior knowledge 
regarding the unknown solution. In this talk, we describe a framework that uses data from calibration 
experiments to pre-compute optimal spectral filters that are used for obtaining reconstructions.  We formulate 
the problem in an empirical Bayes risk minimization framework in order to incorporate statistical information, 
and we use efficient methods from stochastic and numerical optimization to compute optimal filters.  Our 
formulation of the optimal filter problem is general enough to use a variety of assessments of goodness of the 
solution estimate, and the computational methods are efficient for large-scale problems [2]. 
 
Results:  
 
Numerical examples from image deconvolution illustrate that our proposed filters perform consistently better 
than well-established filtering methods.  Furthermore, we show how our approach leads to easily computed 
uncertainty estimates for the pixel values. 
 
Conclusion:  
 
Large-scale inverse problems continue to be a thriving research interest in the mathematics, computer science, 
and image processing communities.  In particular, reconstructing susceptibilities from measured magnetic field 
is a large-scale ill-posed inverse problem [6], and methods developed here can be extended to QSM 
applications. 
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Cellular and animal models potentially useful for testing the new imaging technology and some 
relevant findings with the cellular models 
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Background/Purpose: The new imaging technology that is the focus of this conference should soon allow 
improvements in subcellular imaging as well as enhancements for imaging tissues and specific anatomy in 
medical and biological studies. This presentation will cover cell lines where the investigator can manipulate 
intracellular levels of anyone of several metals chosen and mutant rodents where the levels of iron in particular 
can be altered compared to normal. The intent is to help attendees find appropriate models to test the 
capabilities under development. 

Animal models: The 1st animal model is the Belgrade rat. This rat has a severe anemia inherited as an 
autosomal recessive. The genetic defect is a missense mutation (G185R) in divalent metal (ion) transporter 
(DMT1), a proton-coupled transporter of multiple metal ions [1].  The most important substrate physiologically 
is Fe2+, but other metals such as Mn2+ are also transported. DMT1 is the major GI importer of iron, and also 
exports iron from endosomal vesicles during the transferrin cycle. DMT1 almost certainly has other roles in iron 
homeostasis. The Belgrade rat is therefore a model for iron deficiency and has successfully been used to show 
that R2* mapping will detect the regions of diminished brain iron in the mutant [2]. Remarkably, the animal 
model can also be induced into local iron overload as well [3, 4]. 

The thalassemic mouse is an animal model that spontaneously accumulates iron in multiple tissues [5] 
resembling the human disorder thalassemia intermedia. Homozygous deletion of the ß major globin gene 
leaves the synthesis of adult hemoglobin dependent on only the ß minor globin gene and the α globin gene. 
The imbalance in globin synthesis leads to anemia and iron overload. Subsequently other mouse models for 
thalassemia have been generated; these too develop iron overload. 

Genetic engineering technology has allowed investigators to create other animal models that develop iron 
overload in multiple tissues [6]. The mouse gene for DMT1 has been manipulated so that one can develop 
tissue specific ablation (the cre–lox system) to see where its expression is critical for iron uptake [7]. 

Cellular models: We created 2 cell lines that overexpress 1 of 2 isoforms of DMT1 in a regulated fashion [8]. 
These lines provide the opportunity to manipulate intracellular levels of iron (or Mn) by increasing import. We 
will describe some of the things that one can do with such cells. Of particular interest, we have just used these 
cells as part of a study showing that DMT1 is a potential iron importer for mitochondria, the subcellular site 
where half or more iron flux within cells occurs [8]. 
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Background/Purpose:  
Quantitative susceptibility mapping (QSM) provides a new kind of imaging biomarker to investigate physiological 
status and pathological changes. It is useful for chemical identification and quantification of specific substances 
including iron, calcium, gadolinium, and super paramagnetic iron oxide (SPIO) nano-particles. Calculation of 
susceptibility from MRI phase data involves solving a series of inverse problems that are technically stimulating, and 
there have been increased number of methods that aim to solve this problem. In this manuscript, a framework is 
provided for the QSM reconstruction. 
Signal Model: 
In QSM, it is assumed 
that a spatially varying 
susceptibility 
distribution inside a 
given region of interest 
(ROI) induces a local 
inhomogeneous 
magnetic field. This 
local field is further 
superimposed by a 
background magnetic 
field that is caused by 
other susceptibility 
sources outside the ROI. Finally, the total field inhomogeneity is reflected in the phase image acquired using a 
gradient echo sequence (Fig. 1). Therefore, there are essentially three challenges needed to be overcome to obtain 
a QSM: 1) estimate the field inhomogeneity, 2) remove the background field contribution, 3) invert the dipole fields.  
1) Field map estimation: Both single-echo

1
 and multi-echo

2
 acquisitions have been applied to estimate field map. 

In both methods, the phase is formulated as a linear function of the magnetic field. Repetitive experiments have 
shown that this simple relationship provides a reliable estimation when chemical shift and flow induced shift are 
absent. In the presence of chemical shift, water/fat separation algorithms need to be employed. Flow compensated 
sequence with adaptive quadratic fitting enables reliable measurements in vessels

3
. Phase unwrapping are also 

often encountered to overcome frequency aliasing caused by large off-resonance frequency and long TE spacing. 
2) Background field removal: Two strategies exist, implicit methods where background field removal is 
incorporated with dipole inversion

4
, or explicit methods where background field is removed prior to dipole inversion. 

Most literature adopts the explicit method. Fundamentally, background field estimation is classical problem in 
magnetostatics, in the sense that a solution to the Laplace’s equation with certain boundary conditions is sought-
after. This solution could be found by searching for a linear combination of the basis functions to Laplace’s equation, 
which is essentially the Projection onto Dipole Fields (PDF)

5
 method, or by performing an inverse Laplacian, which 

is essentially the Sophisticated Harmonic Artifact Reduction on Phase data (SHARP)
6
.   

3) Dipole inversion: COSMOS
7,8

 is a physical method that does not rely on prior information but requires sampling 
the same object from at least three different orientations. Various regularization methods have been proposed for 
single-orientation quantitative susceptibility mapping (QSM), which is an ill-posed magnetic field to susceptibility 
source inverse problem. Noise amplification, a major issue in inverse problems, manifests as streaking artifacts and 
quantification errors in QSM. These methods may be split into two categories, non-Bayesian methods

9, 10, 11
 where 

the inversion is primarily formulated in Fourier domain that allows fast calculation, or Bayesian methods
1,12,13

 where 
the inversion is formulated in image domain to allow incorporation of noise weighting. More freedom on the choice of 
prior is also provided using the Bayesian formulation.  
Conclusion:  
A frame work is provided in this work for setting up the inversion process from MRI phase data to quantitative 
susceptibility maps. QSM is a challenging engineering problem that invites further investigation.  
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Phase processing for Quantitative Susceptibility Mapping (QSM) 
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Quantitative Susceptibility Mapping (QSM) aims to determine from an observed magnetic field pertur-
bation ∆B=B–B0 the underlying susceptibility distribution χ that produces the perturbation, or in other 
words, to solve the inverse field-to-source problem 

 
( ) ( ) ( )rrdrrBrB z

rr

′−′′=∆ ∫
′≠

rrrrr χ3
0 d

 
where dz is the z-component of the spatial unit dipole response, B0 is the strength of the applied 
magnetic field, and B is the total (perturbed) magnetic field [1].  
 

The most established technique for assessing 
noninvasively the magnetic field perturbation in bio-
logical tissue is gradient-echo (GRE) MRI with rela-
tively long echo times (TE). The phase φ of complex-
valued GRE images reflects the Larmor frequency 
distribution 
 fL = – γ·B / 2π  
and, thus, indirectly the magnetic field perturbation 
(right-handed MR system): 

φ = φ0 + 2π · (fL–f0) · TE = φ0 – γ · ∆B · TE,  
where f0 is the adjusted reference (demodulation) fre-
quency, φ0 is the signal phase at TE = 0 ms, and γ is 
the gyromagnetic ratio.  
 

The objective of this talk is to provide an over-
view of the processing steps that need to be applied 
to raw GRE phase data before QSM can be per-
formed. In the most general case GRE data are ac-
quired using a multi-channel receive array with Nc 
coils and Ne echoes at different echo times resulting 
in Nc×Ne phase images. Phase image reconstruction 
from the individual coil images and field mapping ex-
tract the total (physical) magnetic field perturbation, 
∆B, from the raw phase measurements, φ. Then, field 
contributions originating from susceptibility variations 
outside of the region of interest need to be eliminated. 
Figure 1 schematically illustrates the phase process-
ing steps. 
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FIGURE 1. Schematic illustration of phase 
processing for QSM. 
 



Magnetic Susceptibility of Brain White Matter 
Chunlei Liu1, 2 

1Brain Imaging and Analysis Center, 2Department of Radiology, Duke University, Durham, NC, USA  
 
Background:  
 White matter occupies roughly half the volume of an adult human brain. It consists largely of glial cells and 
myelinated axons. While traditionally thought of a passive signal transmission unit, white matter has recently been shown 
to actively participate in learning and brain functions. Abnormalities in white matter have been implicated in a wide range 
of neurological disorders and diseases including, for example, multiple sclerosis, mental disorders and traumatic brain 
injuries. Changes in the cellular and molecular composition of the white matter result in changes in its magnetic 
properties. Imaging magnetic susceptibility with MRI thus offers a novel method to study the microstructure of white matter 
and may provide a new way to diagnose and characterize white matter diseases.  

Methods:  
 Magnetic susceptibility can be measured with a 3D gradient-echo MRI sequence (1-3). This sequence generates a 
complex image that includes both magnitude and phase. From the phase images, magnetic susceptibility is calculated by 
solving a deconvolution problem via the technique of quantitative susceptibility mapping (QSM) (4-6). Two quantities can 
be derived as a measure of magnetic susceptibility: the apparent magnetic susceptibility and the anisotropic susceptibility 
tensor (7). Apparent magnetic susceptibility reflects the voxel-averaged bulk magnetization induced by a magnetic field 
applied in a given direction. Susceptibility tensor, on the other hand, measures the orientation dependence of the 
magnetization. The relationship between magnetic susceptibility and the molecular composition and cellular architecture 
of white matter have been investigated by theoretical analysis, simulation and animal models.   

Results:  
 1. Myelin There are growing evidences supporting that the diamagnetic susceptibility of 
white matter predominately originates from the myelin sheath that insulates the axons. When 
the myelin is depleted, white matter becomes less diamagnetic and the susceptibility contrast 
between gray and white matter nearly vanishes. This has been demonstrated in the shiverer 
mice (8), cuprizone treated mice (9) and neonatal mice (10). The transgenic shiverer is an 
autosomal recessive mutation characterized by an almost total lack of myelin in the central 
nervous system, resulting in a near loss of susceptibility contrast (Fig. 1). In neonatal mice, on 
the other hand, myelin has not fully developed. These studies together demonstrate myelin as 
the main source of diamagnetic susceptibility in the white matter. 

 2. Axon Axon provides the structural support for an ordered arrangement of spiraling 
sheaths of myelin lipid bilayers. Each lipid molecule exhibits an anisotropic magnetic 
susceptibility. The long axis of a lipid molecule (mostly phospholipids) is arranged radially 
surrounding the axons. In brain white matter fiber bundles, these axons are roughly parallel to 
each other. Because of this highly structured organization, the bulk susceptibility measured 
over a voxel still exhibits orientation dependence (11). When the axons are parallel to the 
applied field, the measured susceptibility will be most paramagnetic. This anisotropic property 
can be described a tensor.  

 3. Compartmentalization The lipid bilayers are tightly packed structures with 
hydrophobic tails pointing towards the interiors of the bilayer. Consequently, the myelin sheath 
has low permeability for water molecules, resulting in compartmentalized structure in the white 
matter: axonal space, myelin and extracellular space. These three compartments have distinctive relaxation and magnetic 
properties. This compartmentalization can be probed by a variety of methods including varying sequence parameters (TE, 
TR and flip angle), applying saturation, introducing contrast agent or imaging non-proton nuclei (12). As one example, this 
compartmentalization introduces noneponential T2* decay (13).         

Conclusion:  
 Imaging magnetic susceptibility provides a new tool to study the structure and function of brain white matter. It 
complements other existing MRI techniques such as diffusion MRI, mutli-compartment T1/T2 analysis and magnetization 
transfer measurement. A unique advantage of magnetic susceptibility for imaging the brain is its high efficiency, the 
superior spatial resolution and low specific absorption rate. It thus may help overcome certain limitations in existing 
methods at 3T and especially at ultra-high fields.   

References: 1. Haacke, E.M. et al, MRM 2004; 52:612-618. 2. Rauscher, A. et al, AJNR 2005; 26:736-742. 3. Duyn, J.H. 
et al, PNAS 2007; 104:11796-11801. 4. Shmueli, K. et al, MRM 2009; 62:1510-1522. 5. de Rochefort, L. et al, MRM 2010; 
63:194-206. 6. Li, W. et al, NeuroImage 2011; 55: 1645-1656. 7. Liu, C. MRM 2010; 63:1471-1477. 8. Liu, C. et al, 
NeuroImage 2011 ; 56 :930-938. 9. Lee, J. et al, NeuroImage 2012; 59:3967-3975. 10. Argyridis, I. et al, Proc of 20th 
ISMRM, 2012; 410. 11. Li, W. et al, NeuroImage 2012; 59: 2088-2097. 12. Liu, C. et al, Proc of 20th ISMRM, 2012; 417. 
13. van Gelderen, P. et al, MRM 2012; 67: 110-117.   

Fig. 1. Susceptibility shows 
high contrast in control mice 
which have thick myelin 
sheath (EM on the right); the 
contrast disappears in the 
shiverer which lacks myelin. 



Quantitative Susceptibility Mapping inversion algorithms: image space based approaches 
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Purpose:  
The quantitative mapping of magnetic susceptibility using MRI (QSM) provides an additional tool that may 
benefit many clinical applications involving iron, paramagnetic and superparamagnetic contrast agents or 
diamagnetic calcifications. QSM corresponds to the reconstruction of a susceptibility map consistent with the 
field extracted from phase images. Many algorithms and constraints have been proposed in the past years 
based on k-space and image space inverse filtering1-5. This presentation will cover the types of spatial 
constraints practically encountered. Whenever non-uniform effects need to be considered or imposed in image 
space (field masking, internal source extraction, piece-wise smoothing, etc…), iterative algorithms provides a 
convenient way to perform reconstruction. We will limit to expressing reconstruction as a linear least-squares 
(LS) minimization and discuss the implementation of the conjugate gradients (CG) algorithm to solve it. 
 
Methods: 
From the approximation of magnetostatic equations, a linear relationship between the field Bz along B0 and the 
susceptibility X can be expressed as a 2nd order filter in frequency domain6: k2FT(Bz)=B0(k

2/3-kz
2)FT(X), where 

FT denotes the Fourier transform. The reconstruction of susceptibility from field is ill-posed as close to 
k2/3-kz

2=0, imprecise measures of Bz frequencies are obtained. Additionally, in image regions with limited SNR, 
Bz is poorly determined constituting a 1st spatial constraint (Fig.1a). In phase-based measurements, the 
precision can be assumed to be proportional to magnitude7 W, and spatial weighting for Bz needs to be 
considered (Fig.1b). Secondly, highlighting differences between tissues inside a region-of-interest (ROI) is 
usually sought requiring removing external source contribution. It constitutes a 2nd type of spatial constraint 
(Fig.1c,d). Finally, piece-wise constant or smooth regions may be imposed to further enhance the 
reconstruction (Fig.1e). The LS minimization: minX||W(B0DX-Bz)||

2+α||LX||2 exemplify how spatial constraints 
can be accounted for. D denotes the linear operator from susceptibility to field; L is a linear operator 
encompassing the constraints and α, the associated regularization parameter. To perform the reconstruction, 
the CG algorithm8 can be used, avoiding forming the large matrices involved. Visual criteria and residual norm 
considerations4 provide methods for choosing α (Fig.f and g). 
 

 
Results/discussion: 
The limited information available on the measured field Bz, both in image space and k-space, has to be 
accounted for in the reconstruction. The addition of spatial priors on X enhances the various reconstruction 
steps, from the extraction of internal effects to final susceptibility maps4. The approach is flexible in the 
definition of priors and the resolution with the CG algorithm is simple to implement. Reconstruction duration 
can be reduced through pre-conditioning with faster technique1 providing a starting point for the CG algorithm 
and through efficient search techniques for the regularization parameter α. However, spatial priors require an 
adequate definition2, which indicates that QSM reconstruction will gain accuracy if combined with an enhanced 
segmentation. These inversion principles can be extended to image-based priors involving other than quadratic 
norms favoring properties (e.g sparsity) that may be adequate in given situations9.  
 
References: 1Schmueli et al., MRM 2009. 2Wharton et al., Neuroimage 2010. 3Schweser et al., Med Phys 2010. 
4de Rochefort et al. MRM 2010. 5Haacke et al, JMRI 2010. 6Marques et al., CMRB 2005. 7Conturo et al., MRM 1990. 
8Hestenes et al., J Res Natl Bureau Standards 1952. 9Kressler et al., IEEE TMI 2010. 

a b c d e f g 

Fig.1: Simulated data for spheres with varying X. a) Raw field map with wrapping, strong background field and non-
uniform noise. b) Associated magnitude image W providing a measure of precision on field. c) ROI in which internal 
effects (d) are extracted. e) Example of a spatial prior to perform piece-wise smoothing: the gradient of X is forced to 
be 0 at selected locations. f) Example of reconstructed X map and associated k-space (g) displaying noise propagation 
close to the magic angle and indicating a non-optimal α. 
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Background/Purpose:  
 
Electrical conductivity of a biological tissue conveys diagnostic information, which is not available from other 
imaging modalities. Magnetic resonance electrical impedance tomography (MREIT) aims to produce cross-
sectional images of a conductivity distribution inside an electrically conducting object such as the human body. 
Current-injection MRI technique is adopted to capture phase images, which include information of induced 
magnetic flux density. Extracting the induced magnetic flux density data from multiple phase images, one can 
reconstruct conductivity images. In this presentation, we describe the physical and mathematical principles, 
novel data collection methods and reconstruction algorithms, experimental techniques and images from 
phantoms, animals and human subjects. 
 
Methods: 
 
To probe the passive material property of electrical conductivity, we have to either inject current through 
surface electrodes or induce eddy current by using an external coil. In MREIT, we use electrodes to inject 
electric current in a form of pulse into an imaging object where the current pulse is synchronized with a chosen 
pulse sequence. The injected current of a few mA produces a distribution of internal current density J, which 
forms a distribution of internal magnetic flux density B in the order nT. Both J and B are determined by the 
unknown conductivity distribution of the imaging object and the underlying physical principle can be described 
by Maxwell’s equations. The z-component Bz of B perturbs the main field of the MRI scanner and causes 
changes in phase images. Capturing Bz images subject to multiple injection currents after canceling out any 
systematic phase artifacts, we can reconstruct cross-sectional images of the internal conductivity distribution 
based on the relationship between the injection current, conductivity and acquired Bz. 
 
Results:  
 
Conductivity images of phantoms including numerous non-biological and also biological objects showed that 
MREIT can produce absolute conductivity images of 1 mm pixel size with less than 5% error. Postmortem 
animal experiments revealed two technical problems of tissue anisotropy at low frequency and defective Bz 
data in a region of MR signal void. From in vivo animal and human experiments, we found other difficulties 
related with chemical shift artifacts and MR system noise. Limiting the amplitude of injection currents to less 
than 5 mA, we found that imaging of equivalent-isotropic conductivity values inside the human body is feasible. 
 
Conclusion:  
 
From the accumulated knowledge and experiences in MREIT, we can perform in vivo conductivity imaging with 
1 mm spatial resolution and tens of min temporal resolution using clinical 3 T MRI scanners. We expect that 
fast imaging of less than 1 mm scan time using less than 1 mA injection current will be possible through 
technical innovations in pulse sequence design and algorithm development. MREIT is finding clinical 
applications in early-stage tumor imaging, direct neuro-imaging, mapping of current density and electrical field 
during electrical stimulations such as DBS, transcranial dc stimulation and electroporation, lesion estimation in 
RF ablation and so on. 
 
References:  
 
[1]  E. J. Woo and J. K. Seo, “Magnetic resonance electrical impedance tomography (MREIT) for high-
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53, no. 1, pp. 40-68, 2011. 
[3]  J. K. Seo, D. H. Kim, J. Lee, O. I. Kwon, S. Z. K. Sajib and E. J. Woo, “Electrical tissue property imaging 

using MRI at dc and Larmor frequency,” Inv. Prob., vol. 28, 084002, 2012. 
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Fig. 2: From left to right, the magnitude image, 

estimated MSA and principle STI eigenvector 

weighted by the MSA measured from the carbon 

fiber phantom. 

 
Fig. 3: CSST reconstructions in a volunteer 

showing the estimated MSA from a 

reconstruction with 12 and 3 orientations 

respectively and the registered Color FA of the 

same slice showing the orientation of the WM 

fiber tracts
5
. 

Table 1:Measured MSA across volunteers
5
, ppb. 

 
SCC BCC OR 

Subject 1 5  21 20  38 30  24 

Subject 2 14  12 31  24 30  22 

Subject 3 8  16 22  23 31  22 

Subject 4 -7  18 37  24 27  23 
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Background/Purpose: Susceptibility tensor imaging (STI) examines the macroscopic magnetic anisotropy of molecularly 
ordered structures with MRI. STI has been investigated in the white matter, WM, of the brain where magnetic anisotropy 
has been attributed to the organization of myelin bilayers

1-5
. This organization within WM is critical to maintaining the 

function of neurons that is lost in diseases such as multiple sclerosis (MS)
6
. Many orientations of the subject are 

necessary for estimating the magnetic susceptibility anisotropy (MSA) from STI limiting its application in vivo. Applying 
constraints can reduce the number of unknowns in the susceptibility tensor, to 
estimate the MSA with fewer orientations

1, 3, 5
. Here, we examine the origins 

of symmetry in STI in phantom experiments and the potential of CSST 
reconstructions in vivo to investigate MSA in WM. 
Methods: WM Symmetry The magnetization of a voxel M is the sum of the 

magnetic moments within the voxel,  a a 001 BβM  , where aβ is the 

magnetic polarizability tensor of a molecule. Let T
aaa βRRβ  , where 

),,( 321 diagβ is in the molecular frame(xyz) and Ra is the rotation to the 

voxel frame (XYZ). 1) In a tissue made of anisotropic molecules with no 
particular molecular orientation, Schur’s lemma

7
 leads to a scalar 

macroscopic susceptibility: )3/)(( 321   Iχ niso  Eq.1, where n is the 

number of molecules in the voxel and I is the identity matrix. 2) In a realistic 

model of MW, myelin has radial symmetry (Fig. 1): the 3 component lies in 

the transverse plane, while the lipid is freely oriented about the fiber axis and 

3  axis: )()()( azaxaza  RRRR   where Rz is free rotation about the z axis 

and Rx is a rotation about the x axis with a = /2. This leads to 

)2/)(,4/)2(,4/)2((diag 21321321   nWMχ  Eq.2.  

In STI
3
, χ  is the inverse solution 

to
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





FTFT
Eq.3. where  is the relative 

difference field in k-space and b̂ is the B0 direction relative to subject 

orientation, which requires 6 parameters to describe the susceptibility tensor. 

The CSST
5, 8, 9

 is an inverse solution to Eq. 3 where RχRχ T
T , Eq. 4 

Tχ =diag( χ , χ , ||χ ) in the tensor frame and R is the rotation from the tensor 

frame to the subject frame reducing the number of parameters for χ  to 2.  

MRI Phantom 16 orientations were acquired on a phantom containing whole 
and finely cut carbon fiber (CF) with a multi-echo gradient echo data with a 
1mm

3
 isotropic resolution (TR/spacing/#Echoes=88ms/3.2ms/10) on a GE 3T 

scanner for STI. MSA is calculated as 2/)( 321  MSA , when the 

eigenvalues,  , are ordered from signed maximum to minimum. 

Results: Estimated MSA: CF Bar: 0.460.15ppm, Ring: 0.320.04ppm, and 

Cut: 0.13 0.06ppm, showing reduced MSA In the cut CF compared to the 
ring or bar.  
Discussion: The analysis with Schur’s lemma indicates that both molecular 
anisotropy and macroscopic organization order are needed to observe bulk 
cylindrically symmetric MSA with MRI. As demonstrated in the CF phantom, 
Fig. 2, a reduction in the macroscopic order of molecular organization leads to reduced MSA observed in STI in the cut 
versus the whole CF in the ring or bar. The condition number, showing the maximum expected error propagation in the 
CSST reconstruction, is highly sensitive to relative angles between fiber and acquired orientations

5
. Further, human data 

show it is possible to consistently reconstruct the CSST with as few as 3 orientations for WM fibers
5
, reproduced in Fig.3 

and Table 1. These studies demonstrate the sensitivity of STI and CSST to the MSA of molecularly ordered regions such 
as CF and the WM in the human brain despite of the sensitivity of the reconstructions to the MRI acquisitions. These 
studies further demonstrate the potential of such techniques to noninvasively detect the MSA in vivo as a possible 
biomarker of healthy WM. References: 1.Li, W., et al., NeuroImage, 2012. 59(3): p. 2088-97.2.Li, W., B. Wu, and C. Liu, Proc. Intl. Soc. Mag. Reson. 

Med., 2011. 19: p. 121.3.Liu, C., Magn Reson Med, 2010. 63(6): p. 1471-7.4.Liu, C., et al., NeuroImage, 2012. 59(2): p. 1290-8.5.Wisnieff, C., et al., NeuroImage, 

2013.6.Keough, M.B. and V.W. Yong, Neurotherapeutics, 2012.7.Hammermesh, M., Group Theory and Its Application to Physical Problems. 1962, New York: Dover 

Publications, Inc.8.Li, X., et al., NeuroImage, 2012. 62(1): p. 314-30.9.Wharton, S. and R. Bowtell, Proc. Intl. Soc. Mag. Reson. Med., 2011. 19: p. 4515. 

Fig. 1: 

Arrangement of 

molecules in WM 

 



Mapping electric tissue properties using complex B1-mapping 

Ulrich Katscher, Philips Research Europe – Hamburg, Roentgenstr. 24, 22335 Hamburg, Germany 

Introduction  

The electric properties of human tissue, i.e., the electric conductivity σ and permittivity ε, might be used as 

additional diagnostic parameters or might be helpful for the prediction of the local SAR during MR 

measurements. “Electric Properties Tomography” (EPT) derives the patient’s electric properties using a 

standard MR system, measuring the spatial transmit (TX) sensitivity distribution of the applied RF coil [1-8]. 

Thus, EPT does not apply externally mounted electrodes, currents, or RF probes, as in competing 

techniques. The spatial resolution of the reconstructed σ and ε is of the order of the spatial resolution of 

the measured MR images. EPT is quantitative MR, i.e., it yields absolute values of σ and ε. Phantom 

experiments have proven the principle feasibility of EPT, and volunteer brain measurements underline its in 

vivo feasibility [5,6]. Clinical studies are started with preliminary, but encouraging results [9-12]. 

Theory / Methods  

The Helmholtz equation derives σ and ε from the circularly polarized magnetic field B1 = B1 exp(i)  via 
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r
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B

B





            (1) 

with κ  ε - iσ / ω (ω the Larmor frequency). Equation (1) is valid in regions, where the local, spatial 

variation of κ is sufficiently small, e.g., inside compartments with constant κ. Equation (1) has to be applied 

to the B1 of the TX RF coil used for the MR measurement. The amplitude |B1| can be measured with 

standard B1 mapping sequences. The phase  can be estimated by cutting in half the transceive phase of a 

MR image measured with a quadrature volume coil, assuming that the TX phase of this coil resembles its 

receive (RX) phase with switched polarization (so-called “transceive-phase assumption”). The measured 

transceive phase has to be free of unwanted phase contributions, unrelated to RF penetration. Particularly, 

the transceive phase must not contain any contributions from B0, i.e., any off-resonance effects. The easiest 

way to exclude off-resonance effects is the use of refocusing pulses, i.e., sequences based on (turbo-)spin 

echos. The transceive phase of field-echo based sequences includes off-resonance effects, which can be 

removed by any kind of B0 mapping. On the other hand, sequences with balanced gradients (steady-state-

free-precession, SSFP) are known to have benign off-resonance behavior. As long as B0 inhomogeneities are 

too small to cause the well-known banding artefacts, the SSFP transceive phase resembles the transceive 

phase of spin echo sequences fairly well. Thus, if applicable, SSFP seems to be the sequence of choice for 

EPT transceive phase measurements [16]. 

The problem of deriving  from the transceive phase can be solved analytically by an approach sometimes 

called “Local Maxwell Tomography” (LMT) [13-15]. LMT is based on the insight that the reconstructed  

must not depend on the applied RF coil, particularly, the elements of a TX coil array. This condition yields an 

additional equation enabling the separation of TX and RX phase. 

For moderate main field strengths, |B1| = const can be assumed, and Eq. (1) simplifies to “phase-based” 

EPT [5,6] 
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r
r


  .           (2) 

Phase-based EPT reveals two features invaluable for clinical applications: (1) The linearity of Eq. (2) 

supersedes the derivation of  from the transceive phase, thus allowing arbitrary combinations of RF TX 

and RX coils. (2) Skipping the need of mapping |B1|, which is typically a rather lengthy scan, can 

significantly speed up the scan time required for EPT [16]. 



The impact of B0 on EPT and the related question of B0 

optimal for EPT is a non-trivial task [17]. Obviously, higher 

SNR can be expected with increasing B0. This advantage is 

counterbalanced by the increasing violation of the 

assumption |B1| = const for Eq. (2) or the transceive phase 

assumption, respectively. According to [17], the optimal 

tradeoff between SNR and reconstruction accuracy seems to 

be given at B0 = 3T for conductivity imaging. For permittivity 

imaging, the highest available B0 seems to be optimal. 

Results  

Water-based phantoms with different conductivities 

(adjusted via NaCl concentration) and permittivities (adjusted 

via 2-propanol concentration) covering the physiologic range 

served to test the reliability of EPT. The correlations between 

expected and measured values are above 99% for both,  

and  ([3,18], see Fig. 1). Furthermore, the brains of healthy 

volunteers have been investigated [5,6]. Figures 2,3 show  

and  from two different volunteers. Values of  and  

averaged over segmented cerebro-spinal fluid, grey and 

white matter agree with literature values (see, e.g., [19]). The 

observed inter-subject variability of the mean  and  in the 

mentioned compartments is of the order of 10-20% [5]. 

Initial EPT results for brain tumors have been reported for 

1.5T [9] and 7T [10]. All cases show a tumor conductivity 

increased roughly by a factor of two compared with the 

surrounding white matter. A stroke patient was described by 

[12], showing again a clear increase of the conductivity within 

the stroke area. Applying EPT to mammography is more 

challenging than applying EPT to the brain due to typically 

highly nested gland and fat differing significantly in , 

commonly violating the assumption in Eq. (1) of sufficiently 

small spatial variation of κ. Locally adapted filter techniques 

have been suggested to handle these issues ([11], see Fig. 4). 

Discussion / Conclusion 

Using standard MR systems and standard MR sequences, 

mapping of the electric properties seems to be clinically 

feasible, particularly phase-based conductivity imaging. The 

rapidly evolving field will certainly afford further improved 

measurement and reconstruction techniques in the near 

future. The broad spectrum of clinical studies started raise 

hope that answers will soon be available concerning potential 

diagnostic benefits of EPT. 
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Fig. 1: Phantom results [3,18]. The 

permittivity is scaled to  × 10. 

 
Fig. 2: Reconstructed conductivity of 
the brain of a healthy volunteer [5]. 

 
Fig. 3: Reconstructed permittivity of 
the brain of a healthy volunteer [5]. 

 
Fig. 4: Breast cancer example [11]. 
Above: TSE image, showing several 
cysts (green arrows) and tumor 
(orange arrow). Below: Reconstructed 
conductivity of the breast shown 
above. Low/medium/high conductivity 
is found for fat/cysts/tumor, 
respectively. 
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Figure 1 conductivity and permittivity 
maps of a transverse slice across the 

numerical phantom are shown in the top 

and bottom rows respectively. The 
columns show: (a,d) - modeled maps, (b,e) 

- maps reconstructed when using the 

Helmholtz equation assuming  is fully 

known; (c,f) reconstructed maps starting 

from relative receive coil sensitivities 

using the proposed method. Red arrows 
highlight the artifacts present in tissue 

interfaces where the  or  are not 

constant.  

Figure 2 (a) conductivity 

and (b) permittivity maps of 

a transverse slice across the 
compartmentalized phantom 

are shown. Plot  of (c) the 

conductivity as a function of 

NaCl concentration and of 

the permittivity (d) as a 

function of the isopropanol 
volume fraction. Error bars  

represent standard error of 

the mean within the ROI 
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Background/Purpose: All methods to map electrical conductivity (σ) and permittivity (ε) of a sample/tissue using MRI 

presented to date rely on multiple acquisitions. Particularly, in the case where this calculation relies on the interaction 

between oscilating magnetic fields and the tissue, these multiple measurements are necessary to compute quantitative 

magnitude RF transmit fields, B1
+, and either: (a) make assumptions regarding the phase of the RF field that are not valid at 

high field strength [1,2,3]; (b) use multiple transmit coils to estimate the absolute RF phase [4]; or compute absolute RF phase 

by combining B1
+ maps with receive B1

-  maps [5]. In this work we propose a formalism to compute electrical property maps 

based solely on relative receive coil sensitivities that can be obtained from any 3D imaging technique and demonstrate the 

feasibility of this approach in simulations and phantom data. 

Theory The Helmholtz equation is valid for both transmit and 

receive magnetic fields in regions of constant σ and ε. Although 

absolute B1
- fields cannot be measured, relative receive field 

between two coils, , can be measured from any MR 

acquisition as:               

      

where Signali is the signal measured by coil i. 

Given that the conductivity and permittivity experienced by any 

of the receive coils is the same, , it is possible to build 

a set of  linear equations    

 

which can be solved for the gradients of the unknown absolute 

reference field, , if four or more receive coils are 

available. Electrical properties can subsequently be computed by 

rewriting the Helmholtz equation as a function of :   

    
Methods: Numerical Simulations - a transceive array with 16 loop elements surrounding a spherical (d=160mm) phantom 

(σ=0.75 and ε=65) including smaller spheres with varying conductivity (0.2-2.1) and permittivity (40-90) was simulated at 

300MHz using XFDTD v6.4 (Remcom, Inc.). 

Phantom data was acquired on a 7T MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a 32-element receive 

array (Nova Medical Inc). 3DGRE sequence parameters: TR/TE= 8/3.6ms; α=10°, res=1x1x1 mm (5 mins);  Compartmentalized 

spherical phantom (d=120mm ) water phantom: filled with 0.037g/L MnCl2 and 10% isopropanol and 9 spherical 

compartments (d=40mm): 5 with 0, 3, 6, 9 and 12 g/L of NaCl,;4 with 5, 20,35 and 50% volume of isopropanol; 

Results: Figure 1 shows the results of the numerical simulations, where a high correlation (0.99) was found between the 

calculated and modeled properties when the boundaries (where Eq.1 is not valid) are neglected. Figure 2a and 2b show 

masked σ and ε maps. From the plot of the conductivity (Fig. 2c) as a function of NaCl concentration it was possible to 

calculate: σwater=0.15 S/m and σNaCl =0.17 S/m per 1 g/L which is in agreement with literature [3]. From the plot of the 

permittivity of water as a function of isopropanol fraction (Fig. 2c) it was possible to calculate ε water= 85.  

Conclusion: Electrical property mapping based on relative receive sensitivity maps has been demonstrated in simulations and 

experimentally on phantom data. The main advantages of the methodology are: (a) it is based on a single measurement (which 

is faster and less prone to subject motion than multiple-measurement approaches); (b) it does not rely on the measurement of 

B1
+ maps (whose accuracy and precision is limited)[1-5], or on specific coil/subject setups [1-4]; (c) it is insensitive to 

practical complications  such as frequency inhomogeneities or eddy currents [3]; (d) it can be calculated from the same data as 

the quantitative magnetic susceptibility maps!  

References: [1] Katscher et al. IEEE, 28, 2009; [2] Voigt et al, MRM, 66, 2011; [3] van Lier et al, MRM, 67, 2012; [4] Katscher et 

al, MRM, 2012; [5] Sodickson et al, ISMRM, 2012,387 



What is the Relationship Between MR Signal Phase and Underlying Tissue Magnetic Susceptibility? 
Dmitriy A. Yablonskiy 

Washington University, St. Louis, MO, USA 
During the last several years there has been increased interest to the issues related to biological tissue magnetic 
susceptibility, especially in the brain. The focus of many publications is on developing MRI-based techniques to quantify 
tissue magnetic susceptibility from measuring the Gradient Echo (GE) signal phase. To successfully accomplish this task, 
we first need to understand the relationship between the GE signal phase and underlying tissue magnetic susceptibility or, 
more precisely, tissue magnetic architecture - the structural (geometric) arrangement of the main tissue components 
(proteins, lipids, iron, etc.) that, as far as MRI is concerned, act as magnetic susceptibility inclusions.  

An effect of external magnetic field B0 on tissue is usually described in terms of local tissue magnetization ( )m r  that in 

diamagnetic and paramagnetic substances is proportional to B0 with coefficient of proportionality called magnetic 

susceptibility χ


( )r  (note that in white matter the magnetic susceptibility can be anisotropic (1, 2)). This induced 

magnetization produces its own magnetic field ( )h r . If the magnetization ( )m r  is known, one can use Maxwell equations 

to calculate ( )h r . An MR signal is generated by water molecules diffusing in this inhomogeneous magnetic field and 

accumulating phases [ ] [ ]ϕ γ ′ ′= ∫0( ) ( )
t

n z nt h t dtr r , where zh  is a projection of induced magnetic field on B0 and ′( )n tr  

describes a trajectory of n-th diffusing water molecule. Then, the total MR signal can be calculated as a sum over all water 

molecules: [ ]ϕ= ⋅ −∑( ) (0) exp( ( ) )nn
S t S i tr . Calculating this signal for real biological structures is an extremely complicated 

problem and can only be accomplished by using certain assumptions and simplifications that will be discussed in my 
presentation. 
1. Lorentzian sphere approach. In this approach, the real magnetic field ( )h r  created by the tissue is substituted by a field 

that would exist if diffusing water molecules were moving inside a hollow sphere carved out in the tissue (3, 4). While 
this the most commonly used approximation is justified for liquid solutions in the presence of randomly distributed 
magnetic susceptibility inclusions, e.g. contrast agent, it cannot be used in the presence of prolonged cells, e.g. axons.  

2. Generalized Lorentzian Approach GLA) (5). If the magnetic environment is not random (as in the brain which is highly 

organized cellular structure), the calculation of the effect of magnetic field ( )h r should take into account the symmetry of 

this environment. Specifically, the contribution to the real magnetic field ( )h r from longitudinally-arranged structures, 

such as neurofilaments and myelin layers in axons, can be calculated by substituting ( )h r by a field that would exist if 

diffusing water molecules were moving inside a hollow cylinder carved out in the tissue (5, 6). The contribution to ( )h r   

from randomly distributed structures can still be accounted for by using Lorentzian sphere. The GLA explains the “WM 
darkness effect” (5, 6) — the lack of phase contrast between WM and CSF (reported in (5, 7)), despite substantial 
differences in their molecular content and total magnetic susceptibilities. The important consequence of GLA is also a 
prediction of the anisotropy of phase contrast in WM – a correlation between the MR signal phase and orientation of 
neuronal fibers with respect to B0 (5). Importantly, this effect is due to the anisotropic structure of cells, e.g. axons, and 
exists even in the case when the magnetic susceptibility of these structures is isotropic. 

3. Modeling approach. The previous approaches assume that the MR signal from a tissue can be described in terms of a 
single compartment/component model. A more detail description should take into account the presence of different 
compartments (such as intra- and extra-cellular water) as well as anisotropy of magnetic susceptibility of lipid 
membranes (8). For axons, such models have recently been developed in Refs. (9, 10). 

Conclusion: Proper consideration of brain tissue structure at the cellular level and its influence on MR signal phase is 
essential for QSM. 
References: 
1. Lee J, et al. Sensitivity of MRI resonance frequency to the orientation of brain tissue microstructure. PNAS,  2010;107(11):5130-5. 
2. Liu CL. Susceptibility Tensor Imaging. Magnetic Resonance in Medicine. 2010;63(6):1471-7. 
3. Chu SC, Xu Y, Balschi JA, Springer CS, Jr. Bulk magnetic susceptibility shifts in NMR studies of compartmentalized samples: use of paramagnetic reagents. Magn Reson 
Med. 1990;13(2):239-62. 
4. Durrant CJ, Hertzberg MP, Kuchel PW. Magnetic susceptibility: Further insights into macroscopic and microscopic fields and the sphere of Lorentz. Concepts in Magnetic 
Resonance Part A. 2003;18A(1):72-95. 
5. He X, Yablonskiy DA. Biophysical mechanisms of phase contrast in gradient echo MRI. PNAS, 2009;106(32):13558-63. 
6. Yablonskiy DA, Luo J, Sukstanskii AL, Iyer A, Cross AH. Biophysical mechanisms of MRI signal frequency contrast in multiple sclerosis. PNAS, 2012;109(35):14212-7. 
7. Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M. High-field MRI of brain cortical substructure based on signal phase. PNAS, 2007;104(28):11796-
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8. Lounila J, Ala-Korpela M, Jokisaari J, Savolainen MJ, Kesaniemi YA. Effects of orientational order and particle size on the NMR line positions of lipoproteins. Phys Rev 
Lett. 1994;72(25):4049-52. 
9. Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. PNAS, 2012;109(45):18559-64. Epub 2012/10/24. 
10. Sukstanskii AL, Yablonskiy DA. On the role of neuronal magnetic susceptibility and structure symmetry on gradient echo MR signal formation. Magnetic Resonance in 
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Regularization Parameter Estimation for Biomedical Imaging 
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Background/Purpose:  

Reconstruction of images from biomedical data may be formulated as the solution to a linear system of equations Ax ≈ 

b in which the matrix A describes the underlying process for the image acquisition; x is the desired image and b the set 

of measured data with noise. Ill-posedness manifests in ill-conditioning of matrix A, and is characterized by solutions 

which are unstable to noise in the data, and are not uniquely defined. In finding a feasible solution it is essential to 

augment the fidelity with a regularization term, R(x), describing the prior information, thus yielding the solution 

x=argmin {|| Ax-b||2
W

 + λ2R(x)}. Here weighting matrix W is introduced to account for inverse covariance properties of 

the noise in the measurements b, when available; and λ>0 is a regularization parameter. In contrast to a formulation in 

which λ is regarded as a Lagrangian multiplier, carrying no information about noise distributions on the solution and 

prior information, in general the choice for λ is not uniquely defined. Indeed, it can be appropriate to include λ within 

the definition of R(x) so that the scalar λ  is regarded as  an unknown multi-parameter vector, which weights different 

components in the regularization. Many approaches to find the optimal regularization parameter(s) are available 

typically by accounting for both the properties of the noise in the data and the quality of prior information quality (1, 2); 

thus avoiding exhaustive parameter search. This talk reviews methods of choosing regularization parameters to identify 

a statistically valid and computationally feasible method for a given application. 

Methods: 

For this overview we focus on regularizations of the form R(x)= ||x-x0||p where x0 is prior information on x, p=2 leads to 

the traditional Tikhonov regularization; while sparsity, p=0, is obtained by approximating with the choice p=1. 

Alternative forms introduce a mapping on x, Dx, which amounts to expressing the solution in a different basis such as 

the derivative of x or a specific wavelet basis. Often adopted approaches for finding the regularization parameter(s) 

include the discrepancy principle, which finds solution x so that the measure of the fidelity roughly approximates the 

noise in the measurements, the L-curve method that trades off the fidelity || Ax-b||2 and regularizer R(x) often revealed 

as a L shape on a log-log plot, and the principle of generalized cross-validation.  Less used, but robust and efficient is the 

χ2 technique (1). In this overview we assess these standard techniques as well as the less used method of (1) when used 

with p=1,2 regularizers.  

Results:  

Our results contrast  the modeling approach for finding the regularization parameter (1), as compared to exhaustive 
search, or less sophisticated techniques such as the L-curve. We will show that the correct inclusion of statistical 
information, as provided through the χ2 technique, leads to an efficient and effective algorithm for finding the 
regularization parameter; for both p=1 and p=2 regularizers.  

Conclusion:  

The correct inclusion of statistical and prior information in image reconstruction algorithms can improve computational 
feasibility for finding biomedical images.  
 
References:  
1. R. A. Renaut, I. Hnetynkova, J. Mead, Regularization parameter estimation for large-scale Tikhonov regularization using a priori information. Computational 

Statistics & Data Analysis 54, 3430 (2010). 
2. F. Bauer, M. A. Lukas, Comparingparameter choice methods for regularization of ill-posed problems. Mathematics and Computers in Simulation 81, 1795 (2011). 
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Background/Purpose: Gradient-echo (GRE) signal phase and its derived quantitative magnetic susceptibility 
provide invaluable information of brain anatomical details, chemical composition, especially myelin and iron, 
and tissue microstructure (review [1]). They have found many promising applications in the study of 
neurological diseases, e.g. cerebral micro-bleeds, Parkinson’s diseases, multiple sclerosis and so on (review 
[2]). However, traditional pulse sequences for phase and susceptibility mapping usually suffer from long scan 
time due to the requirement of 3D volume acquisition and long echo time for the accumulation of phase 
contrast. A variety of novel sequences, using e.g. spiral [3] and EPI trajectories [4], as well as traditional 
Cartesian trajectory with parallel imaging acceleration, has been proposed and applied to speed up the scan. 
The scan parameters of each sequence were also often adjusted to meet the particular needs of different 
applications. Here, we will make effort to address two practical but important questions regarding the choice of 
pulse sequences and scan parameters for phase and susceptibility mapping: (1) what are their differences in 
terms of signal-to-noise ratio (SNR), scan time, reliability and accuracy? and (2) whether and how phase and 
susceptibility contrasts are affected by the scan parameters, including flip angle, TR and TE?  
 
Methods: We have developed three different sequences for fast phase and susceptibility imaging, including 
multi-echo spiral (ME-Spiral), multi-echo EPI (ME-EPI) sequences, and multi-echo SPGR sequence using 
traditional Cartesian sampling with GRAPPA acceleration (GRAPPA-ME-SPGR). We compared their accuracy 
in susceptibility quantification by comparing to the conventional SPGR sequence, the gold standard. We also 
evaluated their SNR, and reliability by examining the image quality of a series of scans. We further assessed 
the dependence of phase contrast on image acquisition parameters using a conventional multi-echo SPGR 
(ME-SPGR) sequence, with varying TR and flip angles. Two datasets were acquired. The first dataset has 
multiple flip angles with flip angle = 5º, 20º, 40º and 60º, and the second dataset has multiple TRs with TR = 46 
ms, 150 ms and 1s. The echo times were from 4 ms to 36 ms.  
 
Results: Both ME-Spiral and ME-EPI sequences are more effective in accelerating the image acquisition than 
the conventional GRAPPA-ME-SPGR sequence. The spiral sequence allows for fast image acquisition with 1 
mm isotropic resolution and a 192x192x120 mm3 volume within 2.5 min, with similar SNR comparing to that of 
SPGR sequence. However, the ME-Spiral sequence sometimes suffers from susceptibility-induced blurring 
artifacts. Comparing to the ME-spiral sequence, the ME-EPI sequence provides higher reproducibility, however 
with slightly lower SNR. As such, we have to increase the voxel size to improve the SNR. The MR-EPI 
sequence can provide phase and susceptibility maps with a matrix size of 256x256x64 and a voxel size of 
0.86x0.86x2 mm3 within 3 min. The susceptibility values of major brain structures determined by both the spiral 
sequence and the EPI sequence are linearly correlated with those determined by the standard SPGR 
sequence. The GRAPPA-ME-SPGR sequence provides the highest reproducibility with longer scan time 
comparing to the spiral and EPI sequences. A typical scan with a matrix size of 288x254x54 and spatial 
resolution of 0.76x0.76x2 mm3 will require 6 min of scan time. In addition, the GRAPPA-ME-SPGR and ME-
SPGR sequences are particularly good for high resolution brain imaging. While it is known that GRE signal 
phase evolves in a nonlinear phase fashion [5], we found that phase contrast between cortical gray and white 
matter also has a profound dependence on TR and flip angle using the aforementioned scan parameters. This 
is due to the fact that different intra- and intercellular compartments have different frequency shifts. 
 
Conclusion: Each of the studied susceptibility imaging sequences, including ME-Spiral, ME-EPI and 
GRAPPA-ME-SPGR, has its own advantages and disadvantages in terms of scan time, SNR, and 
reproducibility. Although the three different sequences give approximately the same susceptibility values with 
the current selection of scan parameters, our results did reveal a profound dependence of phase and 
susceptibility contrasts on scan parameters, including TE, TR and flip angle. While these pulse sequences 
provides a spectrum of choices for various research and clinical applications, maintaining consistent selection 
of pulse sequence and scan parameters are critical to ensure inter-subject and inter-study reproducibility. 
 
References:  [1] Duyn, J Magn Reson 2013, 229: 198-207. [2] Reichenbach, Neuroimage, 2012, 62:1311-1315. [3] Wu 
et al, NeuroImage 2012, 59: 297-305. [4] Wu et al, Proc ISMRM 2013: 4236. [5] Schweser, Proc ISMRM 2011. 4527 
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Background/Purpose: Recent studies have shown that there is a direct link between the orientation of the nerve fibers in 

white matter (WM) with respect to the magnetic field and the contrast observed in magnitude and phase images [1-2]. It 
has recently been suggested that the myelin sheaths that surround axons are the dominant source of WM contrast in GE 
MRI [3-4]. Creating an accurate model for characterizing the effect of the myelin sheath on the evolution of the magnitude 
and phase of the NMR signal is consequently an essential step toward fully understanding WM contrast and its 
relationship to fiber orientation. In this talk, I will be discussing the results and implications of recent work by our group 
showing that the fiber orientation dependence of the magnitude and phase of signals acquired from WM in vivo can be 
accurately characterized by modeling the myelin sheath as a hollow cylinder composed of material having an anisotropic 
susceptibility that is described by a tensor with a radially oriented principal axis. This hollow cylinder fiber model (HCFM) 
is a two-pool model in which the water in the sheath (cylinder annulus) has a reduced T2 relaxation constant and effective 
spin density relative to its surroundings [5]. As part of this work, a new technique called frequency difference mapping 
(FDM) was utilized to generate local phase based contrast relating to the underlying fiber orientation. 

 
Methods: Analytical expressions for the 

field perturbation due to the HCFM were 
formed. Fig. 1 shows maps of the 
frequency perturbations produced by the 
hollow cylinder, with its principal axis 
parallel (θ = 0°) and perpendicular (θ = 
90°) to B0, as a result of three different 

mechanisms: isotropic susceptibility (
I

χ ), 

exchange ( E ), and radial anisotropic 

susceptibility (
A

χ ). Interestingly, the 

anisotropic offset induces a large 
homogeneous field offset inside the 
axonal compartment of the HCFM at θ = 
90°. These field maps then formed the 
basis of signal evolution simulations that 
were compared to magnitude and FDM 
data acquired in vivo at 7T. Fig 2 shows 
representative high resolution FDM data 
(C) that was formed by subtracting a long 
TE frequency map (B) from a short TE 
frequency map (A). The corresponding DTI-
based fiber orientation map (acquired at 3T) 
is shown in Fig. 2D. 
 
Results: Through comparisons between simulated and in vivo data, the HCFM was shown to accurately characterize 

fiber orientation dependent signal evolution in WM. Fitted parameter values for the HCFM included a short T2 associated 

with myelin water (~8 ms) and a large diamagnetic radially oriented anisotropic susceptibility (
A

χ  ~ -0.12 ppm) [5]. 

Interestingly, this anisotropy generates an average frequency offset that is positive in the myelin, but negative inside the 
lumen. Reduction of the signal from the myelin compartment consequently leaves a negative local frequency offset in WM 
relative to GM, which is strongest in fibers that are perpendicular to the field. Frequency difference mapping forms a 
powerful method for investigating WM microstructure; unlike phase mapping, it is insensitive to nonlocal frequency offsets 
produced by large anatomical structures and by external sources of field inhomogeneity, and in contrast to susceptibility 
mapping and susceptibility tensor imaging, it does not require the solution of an ill-posed inverse problem. 
 
Conclusions: The HCFM offers new insight into the complicated fiber orientation-dependent signal behavior observed in 

WM due to the highly anisotropic properties of the myelin sheath. Also, FDM has the potential to be a useful tool for 
investigating microstructure in vivo. 
 
References: [1] van Gelderen et al. 2011. 67, 110-117. [2] Lee et al. PNAS. 2010. 107, 5130-5135 [3] Lee et al. 2011. 

Neuroimage. 59, 3967-3975. [4] Liu et al. Neuroimage. 2011. 56, 930-938 [5] Wharton and Bowtell. PNAS. 2012. 109, 
18559-18564. 

 

Fig. 1 HCFM field map simulations 

for 
I

χ  = 
A

χ  = E = 1ppm. 

Fig. 2 FDM data acquired at 7T 
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Purpose: Brain iron concentration has been reported to change in several neurodegenerative disorders 
Quantitative Susceptibility Mapping (QSM) methods have shown correlations between magnetic susceptibility 
and iron content in brain gray matter (GM).1-4 The average susceptibility for a brain structure currently is 
determined through manual delineation. For large data sets (group studies) analysis would take a long time 
and be limited by human error. An alternative approach uses stereotaxic atlases as a frame of reference; 
automated coregistration between subject and atlas allows for efficient segmentation of the subject brain. For 
example, the Eve atlas from Johns Hopkins University is a single-subject human brain with 1mm3 isotropic 
resolution in standard Montreal Neurological Institute (MNI) coordinates.5 Regions of interest (ROIs) in the DTI-
based White Matter Parcellation Map (WMPM) in this atlas are based on white matter orientation and tract 
structures. However, when overlaid on QSM images, these ROIs do not align perfectly with GM structures, 
which have very low fractional anisotropy. After defining GM regions on QSM maps to create a new deep GM 
parcellation map (DGMPM) and combining these ROIs with the WMPM, we created the "EvePM," or 
"Everything" Parcellation Map, allowing automated segmentation of QSM images for over sixty brain regions in 
less than 24 hours for 5 subjects. The average susceptibility for GM regions can then be correlated with brain 
iron concentration if a calibration curve is available, for which literature values from age-dependent postmortem 
studies were used.6 
 
Methods: Five healthy male subjects (age 30-33) were studied after IRB approval and written informed 
consent on a 3T Philips system (dual-channel body-coil excitation, 32-channel head receive). Subjects were 
scanned at four orientations with respect to the B0 field.1,3,7 Phase images were acquired with a 3D ten-echo 
GRE sequence (SENSE = 2x1x2, TR = 70ms, TE1 = 6ms, ΔTE = 6ms, α = 20o, fat suppressed, 9:19min). An 
MPRAGE was also acquired (3D GRE turbo-field echo readout factor = 184, shot interval = 3500ms, SENSE = 
1x1x2, TI/TE/TR = 1000/3.2/7.0ms, α=8o). MPRAGE and GRE covered the entire brain (acquired resolution = 
1.2mm isotropic). Using MATLAB, susceptibility maps were calculated using COSMOS1,7 with Laplacian-based 
phase unwrapping.2 The average susceptibility was referenced using a grouped deep WM structure ROI set to 
-0.03ppm, corresponding to average of 0ppm in CSF. As a consequence, brighter contrast in the QSM 
indicates structures more paramagnetic than CSF7. Accuracy of the segmentation methods was assessed 
using a kappa analysis, with one human rater designated as the gold standard. Brain iron concentrations 
determined as a function of age in the globus pallidus (GP), putamen (PT), and caudate nucleus (CN) from 
Hallgren and Sourander6 were used to linearly calibrate susceptibility versus iron, from which the brain iron 
concentration for other deep GM regions could be determined (Fig. 2b).  
 
Results: Figure 1 shows the axial, sagittal, and coronal planes of the 
parcellation maps. The kappa statistic was 0.85 between automated and 
manual segmentation, and 0.89 between human raters, suggesting "almost 
perfect" agreement between all methods. Figure 2a shows the magnetic 
susceptibility for nine deep GM structures in our five 30- to 33-year-old 
volunteers, which was linearly correlated for the GP, PT, and CN with age-
based iron concentration from6 (Fig. 2b, R2 = 0.997). The average 
susceptibility for other GM ROIs was plotted along this line (Fig. 2b), providing 
an estimate of their average brain iron concentration (Fig. 2c).  
Discussion: The increase in contrast and spatial resolution provided by QSM 
versus DTI improved the definition of deep GM ROIs in the Eve atlas, allowing 

!

Figure 1: (a) WMPM on FA map in Eve 
Atlas. (b) Misaligned ROIs from WMPM 
on QSM. (c) Resolved ROIs in EvePM. 



automated reproducible quantification of magnetic susceptibility. We found our 
automated segmentation to have comparable accuracy to manual multiple-rater 
delineation and to be more efficient; manual delineation of twelve ROIs across 
five subjects took three weeks, whereas automated delineation of >60 ROIs 
took less than 24 hours. Brain iron concentration is not straightforward to 
determine, as it changes with age. Future work involves measuring baseline 
susceptibility at different ages to determine brain iron concentration throughout 
development and aging.  
 
Conclusion: This atlas provides a time-efficient tool for automatedly co-
registering and segmenting many regions of interest for quantitative 
susceptibility data, thereby allowing the correlation of susceptibility 
measurements with brain iron concentration, which has been suggested to be a 
potential noninvasive biomarker of neurodegeneration or aging. Images 
exhibiting different types of contrast that have been coregistered to the atlas 
can also be automatedly segmented, allowing for direct comparison of 
quantitative metrics between different modalities.  
 
References: 1) Liu T, et al. MRM 2009;61:196-204. 2) Li W, et al. NeuroImage 
2011;55:1645-56. 3) Wharton S & Bowtell R. NeuroImage 2010;53:515-25. 4) 
Schweser F, et al. NeuroImage 2011;54:2789-807. 5) Mori S, et al. Brain 
2008;40:570-82. 6) Hallgren B & Sourander P. J. Neurochem 1958;3:41-51. 7) 
Li X, et al. NeuroImage 2012;62:314-30.  
Funding: NIH-P41 EB051909, NIH 5 T32 MH015330. 
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!Figure 2: (a) Average susceptibility in 
GM. (b) Linear correlation: suscepti-
bility and [iron]. (c) Estimated [iron]. 
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Background/Purpose: The solution of inverse problems is often ill-posed, i.e. the reconstructed solution is 
non-unique or does not stably depend on the data. In this case, regularization is necessary, usually in the form 
of minimizing a Tikhonov functional. Here, the choice of the regularization functional plays an important role for
the qualitative properties of the reconstructions. For imaging data, the Total Variation (TV) has become a 
standard regularizer [1], especially since compressed sensing became popular. The Total Variation, however, 
is best-suited for modeling piecewise constant images. This assumption is often violated, for instance for 
images of biological tissue, resulting in unwanted blocking and staircasing artifacts in the reconstructions. The 
concept of the Total Generalized Variation (TGV) resolves this issue: It is capable of efficiently representing 
piecewise smooth images [2]. When used as a regularizer, it leads to reconstructions with a high visual quality 
where in particular, edges are preserved and staircasing artifacts are absent [3].

Methods: The Total Generalized Variation of second order can itself be seen as the solution of an appropriate 
minimization problem. When used for regularizing the inverse problem Ku=f, the latter becomes

min
u

∥Ku−f∥2
2

2
+TGVα

2
(u )      with     TGVα

2
(u )=min

w
α1∥∇ u−w∥1+α0∥ℇw∥1

where u is the data to reconstruct, K an arbitrary linear forward mapping and f some given data. In the 
definition of TGV, 0 and 1 are the regularization parameters, ∇u denotes the derivative and ℇw=(∇w + 
∇wT)/2 is the symmetrized derivative. This minimization problem is convex and can be cast into a convex-
concave saddle-point problem. Efficient abstract algorithms are available for the latter, here we choose the 
method of [4] in the variants described in [5] and a parallelized GPU implementation.

Results: To test the effectiveness of TGV2-
regularization, solutions for a deconvolution
problem were computed [5]. A known image
was blurred by convolving with an out-of-focus
point-spread function. Noise was added such
that direct inversion is no longer possible. 
Afterwards, deconvolution regularized with
TGV2 and TV was performed. The outcome of
this experiment can be seen in Fig. 1. In
comparison to TV, smooth regions
corresponding to soft tissue are more faithfully
recovered by TGV2. In a second experiment,
we performed reconstruction from parallel 
undersampled radial k-space data [3]. A
known image was sampled, in k-space, with
24 radial spokes and 32 channels.
Reconstruction was performed using the
NUFFT and CGSENSE [6] methods as well as
TGV2-regularization, see Fig. 2. Again, the
latter yields high-quality results.

Conclusion: TGV provides a flexible regularization framework for recovering piecewise smooth data, in 
particular images of biological tissue which are not piecewise constant. It can be applied to a wide range of 
inverse problems. Efficient GPU-based algorithms solving the associated minimization problems are available.

References: [1] Rudin et al. Nonlinear total variation based noise removal algorithm. Physica D 60:259-268 
(1992). [2] Bredies et al. Total generalized variation. SIIMS 3:492-526 (2010). [3] Knoll et al. Second order total
generalized variation (TGV) for MRI. MRM 65:480-491 (2011). [4] Chambolle and Pock. A first-order primal-
dual algorithm for convex problems with applications to imaging. JMIV 40:120-145 (2011). [5] Bredies. 
Recovering piecewise smooth multichannel images by minimization of convex functionals with total 
generalized variation penalty. SFB-Report 2012-006 (2012). [6] Pruessmann et al. Advances in sensitivity 
encoding with arbitrary k-space trajectories. MRM 46:638-651 (2001).

Fig. 1: Deconvolution example. From left to right: Ground truth, blurred and noisy data, 
TV-regularized reconstruction, TGV2-regularized reconstruction.

Fig. 2: Undersampling reconstruction example. From left to right: Ground truth, NUFFT 
reconstruction, CGSENSE reconstruction, TGV2-regularized reconstruction.



Iron Mapping in Parkinson’s Disease 
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Background/Purpose:  
Parkinson’s disease (PD) is a common neurodegenerative disorder that affects 2-3% of individuals over age 
65.  The major clinical features include a resting tremor, bradykinesia, rigidity and impaired postural reflexes 
while the underlying pathophysiology relates, at least in part, to a loss of dopaminergic neurons projecting from 
the substantia nigra pars compacta (SNc) to the striatum.  The diagnosis is clinical, based on the presence of 
the characteristic neurological features.  There are no confirmatory diagnostic tests although radionuclide 
imaging with PET or SPECT can provide evidence of impaired function in presynaptic dopaminergic nerve 
terminals.  There is a need in clinical research for a technique that may provide diagnostic information as well 
as objective information regarding disease severity and progression.  Several lines of evidence point to the 
possibility of increased iron content in the SNc in this disorder, raising the possibility that iron mapping with 
MRI may be a useful technique in this regard.   
 
Methods: 
We have explored the use of a multiple gradient echo sequence at 3 tesla designed for rapid single-scan 
mapping of the proton transverse relaxation rate (R2*) in untreated subjects with PD and in age-matched 
normal controls.  Voxel-wise measurements of R2* were obtained from midbrain regions containing the SNc 
and from forebrain regions containing the striatum and pallidum.  These measurements were correlated with 
clinical estimates of disease severity from the motor subsection of the Unified Parkinson’s Disease Rating 
Scale. 
 
Results:  
Our results indicated a difference in measured R2* values between PD patients and controls in the lateral SNc, 
corresponding to the known distribution of neuronal loss occurring in this disorder. Linear regression indicated 
a correlation between the lateralized motor score from the clinically most affected side and R2* values from the 
opposite lateral SNc. 
 
Discussion:  
These preliminary results are consistent with the suggestion that increased nigral iron content demonstrated 
with high field MRI in PD may provide useful diagnostic information as well as an objective marker for disease 
progression.  We are currently pursuing longitudinal studies with this methodology and are exploring other 
methods for mapping the iron-rich regions of the brain in PD and related neurodegenerative disorders.  There 
are several caveats that must be kept in mind, however, in the interpretation of iron mapping in these 
disorders.  Accurate localization of the SNc on midbrain images has been a substantial source of variability in 
reports of MRI in PD.  The immediately adjacent substantia nigra pars reticulata has a higher iron content than 
does the SNc but does not contain the dopaminergic nigrostriatal neurons that are known to be involved in PD. 
The mechanism underlying the iron accumulation observed in PD remains uncertain.  There is controversy 
regarding whether iron is actually pathogenic in this situation or whether it is merely an innocent bystander 
serving as a marker of neurodegeneration.  Further studies are needed to help resolve these issues 
 
References:  
Wild JM, Martin WRW, Allen PS. A multiple gradient echo sequence optimized for rapid, single scan mapping 
of R2* at high B0. Magn Reson Med 2002;48:867-876 
 
Martin WRW, Wieler M, Gee M.  Midbrain iron content in early Parkinson disease: A potential biomarker of 
disease status.  Neurology 2008;70;1411-1417 
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Introduction  
Quantitative Susceptibility mapping (QSM) has its roots in phase imaging and in a sense was stimulated by the 

major research and clinical interest in susceptibility weighted imaging (SWI) 
1–5

. Most of the applications of 

SWI have used long echo times to enhance susceptibility effects and small phase changes. However, there are 

practical problems with this long echo time (TE) approach, in terms of both macroscopic and microscopic 

(relative to pixel size) phase aliasing. The former can be corrected while the latter leads to T2
*
 signal loss and 

the infamous blooming artifact that makes the object appear larger than its actual size. In turn, this leads to 

underestimates of susceptibility values for small objects. Data collected at short TE could be used to address 

this problem. As one example, we have produced susceptibility maps of the leg with improved quality. We have 

also developed an interleaved double TE SWI sequence for both short and long echo scans. This approach can 

provide the means to handle both low and high iron concentrations and better unwrap the phase data using a 

complex division method. The resulting complex divided images can then be used to make a more accurate 

forward model prediction of the geometry effects without the normally required phase unwrapping algorithms. 

This helps to preserve the local phase information, without the need for heavy high pass filters 
6
. One of the 

more interesting aspects of using short TE is being able to handle the phase changes originating from areas or 

tissues with no MR signal, such as the air, bone and calcium. The susceptibility differences around such areas 

can be so large that the susceptibility cannot be reliably quantified unless a short enough TE is used.  

 

Methods  
 

QSM in the leg  
For generating the QSM of the leg, we collected sagittal SWI data using a single echo SWI sequence with: 

TE=7.65msec (at which water and fat are roughly in phase), TR=20ms, FA=15°, B0=3T (Siemens Verio) and 

0.5×0.5×1mm
3
 resolution. The geometry of the leg was extracted from the magnitude images and was used to 

remove the air-tissue induced field variation by forward modeling. There was minimal phase aliasing after the 

geometry induced field was removed. The remnant phase aliasing was removed by locally shifting the baseline 

of the phase images (shifting the phase origin from zero toward –π given the knowledge that all aliasing is 

occurring because the phase is increasing toward positive π and then aliasing). Then, 3D high-pass filtering was 

applied in the image domain, using a normalized spherical kernel with variable size (32 pixels for the central 

part of the leg and smoothly reduced to 4 pixels near the edge). In order to reduce the edge artifacts induced by 

the high-pass filtering, the phase values in the bone region were obtained through 3D interpolation prior to the 

high-pass filtering. QSM was generated using truncated k-space division with regularization threshold 0.1.  

 

Sinus mapping  

Removing background field effects and phase unwrapping are the first steps for any susceptibility mapping 

procedure. Hence, the main function of this step is to preserve the phase by avoiding using any filtering 

techniques, such as homodyne high pass (HP) filter, or if possible, other sophisticated approaches that require 

phase unwrapping. Using HP filter on the phase data can affect the accuracy of susceptibility quantification 

since it leads to loss of phase information.  

 

When there is a large susceptibility difference, such as air/tissue interfaces, one of the best ways to reduce 

aliasing is simply to use a short echo. In the following discussion, we will focus on the use of a very short echo 

time of just 2.58ms for QSM.  

 

In order to achieve this short TE, we have developed an interleaved double TE GRE sequence to simultaneously 

collect two images with arbitrary TE values. For each phase encoding step, two consecutive TR blocks were 

executed. The first TR block collects the data for the first image, and the echo time is TE1, while the second TR 



block collects the second image with echo time as TE2. Otherwise the two TR blocks are identical. This 

sequence at each echo time is fully flow compensated. TE1 and TE2 can be set independently. By collecting two 

images in such an interleaved manner, the two images will be precisely realigned to each other, and this ensures 

that the only difference between the two images is their TE values.  

 

As an example of this sinus mapping concept, we collected SWI data sagittally using the interleaved double 

echo sequence with: TE1=5.68ms and TE2=8.25ms, TR=20ms, FA=15°, B0=3T and 0.5×0.5×2mm
3
 resolution 

acquired with an FOV that covers the whole brain and neck. The 5.68ms data were complex divided by the 

8.25ms data to produce a new phase image with an effective TE of 2.58ms, which was selected to be close to 

the in-phase value of water and fat. This is important when we examine the signal from extra-cerebral region as 

there are fatty tissues in this region and any major chemical shift in the fat can be misconstrued as a 

susceptibility effect. Any linear phase shifts were removed by shifting the echo back to the center of k-space, 

and any remnant aliasing in the 2.58ms phase image was removed by shifting the baseline. Then we used a 

regularization threshold of 0.2 on the QSM results [1] to generate the susceptibility maps (SMs) of sinuses. 

Finally, to focus just on the sinuses, the SMs were thresholded by removing all values lower than 4ppm. What 

remains can be considered as the major components of the sinuses and can be used in any forward modeling to 

calculate and reduce the field induced by the sinuses by subtracting the estimated phase from the original phase. 

 

Results 

 

Intermediate echo time single echo approach: For the leg, with only one TE of 7.65ms, we were able to remove 

the background field induced by the complex geometry through forward modeling and variable high-pass 

filtering (Figure 1b). Note that the geometry induced field variation as indicated by the white arrows in Figure 

1a is removed in Figure 1b. The edge regions are also handled properly. This leads to better quality of SMs 

(Figure 1c). 

 

 

 

 

 

 

 

 

   

   

 

   

Figure 1. a) Original phase image, b) phase image after applications of forward modeling to remove some 

background phase and of the variable HP filter and c) the maximum intensity projection (MIP) of the 

susceptibility maps. The data were collected on the leg using TE=7.65ms. 

 

Short TE two echo approach: Figure 2a demonstrates the complex division result of the brain with an effective 

echo time of 2.58ms. This image shows considerably less phase wraps around the air-tissue interfaces, making 

it possible to preserve the phase information even outside the brain (pericranium to scalp). In Figures 2b and 2c, 

the susceptibility values are negative in the bone regions, but more positive in the sinuses than other areas of the 

brain, as expected. With a better knowledge of the shape of the sinuses, one can better estimate the phase 

induced by the geometry of the susceptibility source itself (Figure 3) using the forward modeling [2]. After 

subtracting the estimated sinus phase from the original longer echo data (TE=8.25ms), a Homodyne high pass 

filter was applied. Figure 3 compares the phase image obtained from above described approach with the 

traditional HP filtered phase image, revealing the important local tissue signal hidden under the sinus phase. 

 

a) b) c) 



a)   b)   c)   
 

Figure 2. a) The resultant phase (TE=2.58ms) after complex division using TE=5.68ms and TE=8.25ms phase 

datasets. b) and c): SMs generated by preserving the phase inside the head (pericranium to scalp) in sagittal and 

transverse planes, respectively. The white arrow in b) points towards the reconstructed brain sinus and the black 

arrow in c) identifies the teeth.  

 

b)   a)   

 
Figure 3. a) Traditional homodyne high-pass filtered (32x32) phase images, b) high pass filtered (32x32) phase 

image after subtracting the sinus phase simulated from forward modeling of the sinus geometry.  

 

Discussion and Conclusion: 
 

For many years, the focus of quantitative susceptibility mapping has been using long echo times (usually on the 

order of 20 to 30ms at 3T) to image brain iron, small veins and fiber tracts with different levels of myelin 

contents. The reasons are basically two-fold. First, one expects better SNR from phase images at longer echo 

times and second, if susceptibility differences are small (say on the order of 10 to 20 ppb) then it will need a 

long echo time to reveal these phase differences. However, there are a number of interesting studies that can be 

done with shorter echo times, for example, estimating oxygen saturation in major veins
7,8

, vessel wall 

differences in the peripheral vasculature
9
 or any other part of the body for that matter. Our earlier work showed 

that even an echo time of 7 to 8ms is enough to extract phase information with good SNR in imaging vessels in 

the leg
7–9

 with much less aliasing than with the conventional approach of TE = 20ms. 



It is understood that the shorter the echo time, the less the phase aliasing. This is especially true for areas with 

high susceptibility differences such as the air-tissue boundaries in the sinuses. These high susceptibility sources 

then create a major non-local problem of phase invading other regions of interest (for example, around the mid-

brain).  By using shorter and shorter echo times, regions which are usually heavily aliased, now have no need 

for phase unwrapping. The usual local contributions from the brain can now be treated as noise and the major 

goal now becomes imaging the sinuses not imaging the brain. By thresholding out those parts of the brain with 

tiny susceptibility effects, the remnant SMs will represent the air in the brain. A major point here is that unlike 

the original forward modeling approach that required estimating the region of the sinuses from the magnitude 

images, the resulting SMs of the sinuses will have the precise geometric information to recreate the complex 

and significant phase effects seen at long echo times, which can be thus estimated and subsequently removed. 

Nevertheless, the magnitude images can still be used as a constraint to keep only those points that are clearly air 

but not tissue. Finally, by using forward modeling of these detailed images of the sinuses, the deleterious sinus 

effects can be, to a large degree, removed from longer echo times. The success of this sinus mapping was made 

possible by keeping as much information from all tissues surrounding the sinuses. 

 

The ability to map structures other than tissues with water using susceptibility mapping is possible as long as 

the object of interest has relatively uniform susceptibility and is surrounded by other structures with MR signal, 

provided that sufficient phase information is available to properly extract the local susceptibility. One of the key 

features of our approach is that the extra-cerebral tissues are included, and no brain extraction algorithm was 

used in this approach. It is critical to maintain the pristine phase around the sinuses as this provides valuable 

information for estimating the susceptibility of these air regions. 

   

In conclusion, shorter echo times make it possible to image the surface of teeth, bone (making imaging the spine 

more interesting for QSM), and other structures with a large susceptibility but low or no MR signal. Instead of 

being viewed as sources of problems, now these structures can be viewed as an important source of information. 

Finally, one can imagine in the future using this concept to image many other structures. For example, this 

concept could be applied in material science for imaging solids or structures with inclusions where the 

difference in susceptibility will manifest in field changes outside the object, but there is no need for this 

structure to contain water.  
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Background: Calculating susceptibility maps from MRI phase data is an inverse problem that can be simply 

expressed in the Fourier domain (k-space):  ( )   
   ( )

  
  ( )    [Eq. 1] where (k) is the susceptibility 

distribution in k-space and Bz(k) is the Fourier Transform (FT) of the measured z-component of the magnetic 
field perturbation and is scaled by the magnitude of the main magnetic field B0. D(k) is the FT of the unit dipole 

or convolution kernel that relates the field to the susceptibility in real space and is given by  ( )   
 

 
  

  
 

  
  

where kz is the z-component of the k-space vector k whose magnitude is given by      
    

    
  . This 

inverse problem is ill-posed, meaning that a unique solution does not exist because (k) tends to infinity where 
D(k)=0 on two conical surfaces in k-space at the magic angle to B0. The problem is also ill-conditioned, 

meaning that noise or errors in Bz(k) close to these conical surfaces are amplified. “K-space based” 
algorithms overcome the ill-posed and ill-conditioned nature of the inverse problem by removing, substituting or 
correcting the data in the ill-conditioned regions R on and near these cones in k-space. 
 
Methods: Such k-space based algorithms also do not usually involve introducing spatial (image-space) prior 
information to solve the inverse problem i.e. regularization. To some extent, the inversion approach is 

determined by the MRI acquisition parameters. For example, if the field is measured with the object ((k)) at 

multiple (≥ 3) angles to B0 [1-3] then R can simply be filled with data acquired at the other orientations and (k) 
outside R is averaged over orientations. Most multi-angle methods rely on iterative least-squares fitting done in 
image space. Due to the practical difficulty of multi-angle acquisitions, several methods have been developed 
for single-angle acquisitions. These can be classified according to 1) R: which regions of k-space data are 
modified and 2) the modification technique. Perhaps the simplest inversion algorithms are those involving 
thresholded k-space division (TKD) in which the extent of R is determined by a threshold applied D(k)-1 [4] or 
D(k) [3, 5-8] and 2) have included truncation of |D(k)-1| above a certain value [4], masking out ill-conditioned 
data [3, 6], or combining these by ensuring |D(k)-1| transitions smoothly between its maximum values and zero 

on the k-space cones [5]. (k) inside R has also been obtained by solving the derivative of Eq. 1 with respect to 
kz [7] and using compressed sensing [8]. Some inversion approaches can be considered as hybrid algorithms 
alternating between k-space and image-space [9]. Even some regularization-based approaches [10] rely on 
first subdividing k-space into three sub-domains (including R) and using different inversion techniques for each. 
 
Results and Discussion: Each of these algorithms has relative merits and disadvantages. Multi-angle 
approaches, although for a time considered a gold-standard, have the drawback of averaging out the 
orientation dependence of the measured susceptibility [11, 12]. Although they can suffer from streaking 
artifacts, single-angle k-space-based approaches such as TKD are straightforward and computationally 

efficient relative to regularization or image-space-based methods that may result in a smoothed (r) affected 
by the spatial prior information used [2]. With TKD methods, there is a trade-off in choosing R large enough to 
reduce noise and sufficiently small to preserve spatial resolution and contrast. 
 
Conclusion: Formulating the inverse problem in k-space is an important framework useful for understanding 
the plethora of different inversion algorithms. The classification into k-space or image-space based approaches 
is blurred by newer hybrid algorithms [9, 10] that exploit the advantages of both types of method. 
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